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Abstract

Climate models exhibit biases in the mean state and in variability across differ-

ent regions of the Earth. For example, atmosphere-only models have a pole-

ward bias in summertime jet streams across the Northern Hemisphere (NH).

This can result from many processes, including misrepresentation of Rossby

waves that can propagate in different directions and thereby interact with jet

streams. However, Rossby-wave biases can result from biased background state

of the climate system as well. The propagation speed of Rossby waves depends

on jet stream strength, thus a poleward displacement of the jet stream can hin-

der westward propagation of Rossby waves at higher latitudes and displace

eastward propagating Rossby waves (downstream development). These biases

then impact other regions resulting in biased atmospheric circulation across

the NH. Indeed, in this study we confirm this via regional nudging experi-

ments within the Norwegian Earth System Model. Namely, nudged horizontal

winds over the North Pacific can improve Rossby wave statistics and thereby

atmospheric circulation over Eurasia (i.e., upstream). However, nudging over

the North Atlantic has little effect on boreal summer atmospheric circulation.

This implies that improving biases over the North Pacific is crucial for a better

representation of modelled boreal summer circulation over Eurasia.
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1 | INTRODUCTION

Climate models exhibit biases in simulating many aspects
of the mean climate and variability of the midlatitudes

(e.g., Harvey et al., 2020; Priestley et al., 2020, 2023;
Simpson et al., 2020). In boreal summer, typical model
biases include weaker storm tracks and poleward-shifted
jet streams across the Northern Hemisphere (NH), both
of which are especially pronounced in atmosphere-only
configurations of climate models (for an intercomparison
of atmosphere-only climate models, see Figure S1a,b).
Among the factors that may contribute to such circula-
tion biases are poor representation of atmosphere–ocean/
land/ice exchange, land and sea surface temperature
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(SST), diabatic processes, topography, teleconnections
and other nonlinear processes in the climate system, as
well as inadequate model resolution (Athanasiadis
et al., 2022; Bony et al., 2015; Luo, 2005; Nakamura
et al., 2010; Omrani et al., 2019; Seneviratne et al., 2010;
Shaw et al., 2016; Steinfeld & Pfahl, 2019; Swanson, 2002;
Wang et al., 2023).

In general, meridionally shifted jet streams may be
linked to biases in temperature gradients (over land and
sea) and the related energy available (directly) via ther-
mal wind balance or (indirectly) via interactions with
Rossby waves (e.g., positive baroclinic feedback;
Robinson, 2000). Rossby waves are large-scale waves that
help shape the general circulation of the atmosphere
(and ocean) (e.g., Holton, 2004; Hoskins et al., 1983), but
whose characteristics also depend on the mean strength
and position of the jet stream (background zonal flow; u).
For example, Rossby wave phase speed (c) is
(e.g., Holton, 2004)

c¼ u"β= k2þ l2
! "

, ð1Þ

where β is the meridional gradient of planetary vorticity,
k is the zonal wavenumber and l is the meridional wave-
number. Equation (1) implies that if the background
zonal flow is weak (u! 0) or the waves are long enough
(k small), Rossby waves can propagate westward
("β= k2þ l2

! "
<0) against the eastward mean flow

(u>0). Shorter waves (k large) generally propagate east-
ward with the mean flow (u>0 dominates) and can
affect regions downstream (e.g., via downstream seeding/
development; Chang, 1993, 1999; Chang & Yu, 1999).
Additionally, the jet stream affects the meridional propa-
gation of Rossby waves and thereby wave-breaking and
dissipation (Barnes & Hartmann, 2010; Hoskins &
Ambrizzi, 1993). This in turn can affect atmospheric
blocking events (e.g., Weijenborg et al., 2012), persistent
high-pressure weather patterns characterized by a rever-
sal of geopotential gradients (Kautz et al., 2022;
Lupo, 2021), whose frequency is typically underestimated
in climate models (Figure S1d; Davini & D'Andrea, 2020;
Masato et al., 2013; Simpson et al., 2020).

Biases in the jet streams and Rossby waves have con-
sequences not only for the upper-tropospheric circulation
but also for surface climate (Luo et al., 2022). In NH sum-
mer, Rossby waves of all scales are important and inter-
actions between synoptic scale waves and the large-scale
flow have been shown to play a key role in producing
persistent warm and dry events, such as those linked to
heatwaves and droughts (Coumou et al., 2014;
Kornhuber et al., 2017; Mann et al., 2017; Petoukhov
et al., 2013; Pyrina et al., 2024). This means that the

erroneous representation of Rossby waves may also feed-
back onto the near-surface temperature gradients that set
the large-scale atmospheric circulation.

The main goal of this study is to assess the potential
role of biases in jet streams over the North Pacific and
North Atlantic storm track regions in setting large-scale
flow conditions over the NH continents. The storm tracks
are preferred locations for the generation of Rossby
waves, and their propagation away from these source
regions produces remote effects both upstream and
downstream. However, the wave propagation in models
will be influenced by the poleward bias in the summer jet
streams (Figure S1a,b). To assess the remote impacts of
the jet biases on the atmospheric flow over the conti-
nents, we perform nudging experiments where winds in
the storm track regions are corrected towards the
observed climatology.

The study is structured as follows. Section 2 describes
the model experiments, data and methods, Section 3
shows the results and discussion/conclusions are pre-
sented in Section 4.

2 | DATA AND METHODS

2.1 | Model experiments and data

We use the atmospheric component of the Norwegian
Earth System Model (Seland et al., 2020) version 2.2
(NorESM2.2), which is based on the Community Atmo-
sphere Model version 6 (CAM6) (Bogenschutz et al., 2018;
Danabasoglu et al., 2020), with prescribed sea-surface tem-
perature (SST). The model is run at medium resolution:
1.25& ' 0.9424& in the horizontal with 32 vertical levels.
This model version allows a straightforward implementa-
tion of regional nudging, which we exploit to perform a
number of experiments, all driven by monthly mean his-
torical SSTs and external forcing over the period 1979–
2013. We use ERA5 reanalysis (Hersbach et al., 2020),
which is provided by the European Centre for Medium-
Range Weather Forecasts, as the target data for nudging
experiments (see also Equation 2).

The main experiments are: (1) control, that is, no
nudging (CTL); (2) regional nudging of zonal and meridi-
onal winds to ERA5 reanalysis over the North Pacific
region (Pacific nudging; Figure 1a); and (3) regional
nudging of zonal and meridional winds to ERA5 reanaly-
sis over the North Atlantic region (Atlantic nudging;
Figure 1b). The model experiments are run for 35 years
(1979–2013) of which the first year is taken as a spin-up
period and the rest are analysed.

The regional nudging is achieved by relaxing the sim-
ulated wind field towards the ERA5 wind field (both the
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variability and mean state) in the troposphere only
(Figure 1c). In practice, the nudging is implemented as a
relaxation tendency between the instantaneous model
state and a target state

Fnudge ¼
α

Δtnudge
Starget"Smodel
! "

, ð2Þ

where S is one of the variables we would like to nudge
(zonal or meridional wind), α is a normalized strength
coefficient (� 0,1½ )) and Δtnudge is the relaxation time
scale (6 h). ERA5 data is provided to the model every 6 h
and linearly interpolated for the time steps in between.

The nudging region is specified via a nudging win-
dow, where α increases from 0 (no nudging) to 1 (full
strength nudging) both horizontally and vertically
(Figure 1). The Pacific nudging region (Figure 1a,c) is
specified as:

α¼

1

;

ϕ� 27:562:5½ )
&
,λ� 135,225½ )

&
, lvl≳ 15

tanh decrease from1 to 0

;

transition zone
0

;

ϕ≲ 12:5
&
or ϕ≳ 77:5

&
,

λ≲ 115
&
or λ≳ 245

&
, lvl≲ 11,

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð3Þ

where ϕ is latitude (in degrees north), λ is longitude
(in degrees east) and lvl is model level counter (with level
1 at the top of the atmosphere and level 33 at the surface;
lvl= 11 corresponds to *100 hPa, lvl= 15 corresponds to
*200 hPa).

Similarly, the Atlantic nudging region
(Figure 1b,c) is:

α¼

1

;

ϕ� 27:5,62:5½ )
&
,λ� 290,340½ )

&
, lvl≳ 15

tanh decrease from1 to 0

;

transition zone

0

;

ϕ≲ 12:5
&
orϕ≳ 77:5

&
,

λ≲ 270
&
or λ≳ 0

&
, lvl≲ 11:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð4Þ

These regions are defined such that the horizontal
winds are strongly nudged over the midlatitude oceans,
leaving winds over the continents, the Tropics and the
Poles largely untouched (Figure 1). The flow in other
regions will adjust to the ‘corrected’ wind field, as will
other atmospheric variables (importantly, temperature),
raising the possibility of unwanted spurious circulation
responses. To check this, we have performed four sensi-
tivity experiments based on the Pacific nudging experi-
ment (2): (i) as in (2) but in a smaller region; (ii) as in

FIGURE 1 Nudging coefficient α (see Equations 3 and 4) for (a) Pacific nudging experiment, (b) Atlantic nudging experiment and
(c) vertical extent of nudging in both experiments.
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(2) but nudging temperature along with the wind field;
(iii) so-called ‘anomaly nudging’ where the wind field is
relaxed towards the model's climatology with ERA5 vari-
ability superimposed; and (iv) ‘online’ bias correction
where the climatological seasonal cycle (by day-of-year)
of nudging tendencies from (2) is applied as an additional
forcing term to the relevant momentum equations. The
latter means that the difference between ERA5 and con-
trol run is prescribed in the form of mean nudging ten-
dencies, which then acts as an effective ‘online’ bias
correction of the model's mean state.

Experiment (i) yields similar results to the Pacific
nudging experiment (not shown). Experiment
(ii) produces slightly stronger corrections to the flow
within the nudging region itself due to the additional
temperature constraint, but yields similar results to the
Pacific nudging experiment elsewhere (not shown). Thus,
wind nudging alone is a good approach for the purposes
of this study, as has also been shown by others
(Figure S10; Zhang et al., 2014). Experiments (iii) and
(iv) are brought into the discussion where appropriate
(Section 4; Figure S9) to help clarify the role of mean
state versus variability biases. Note that our focus is not
the sensitivity of the model to nudging, but rather on
whether ‘correcting’ the tropospheric circulation in one
region can improve the mean state and variability
elsewhere.

The NorESM2.2 experiments are compared to the
ERA5 reanalysis (Hersbach et al., 2020). For broader con-
text, we also show selected results using atmosphere-only
(AMIP) model simulations from the Coupled Model
Intercomparison Project Phase 6 (CMIP6; Eyring
et al., 2016) in the supplement (Figure S1; Table S1). All
data are analysed at 2.5& horizontal resolution and on
specific pressure levels (see below) over the period 1980–
2013 for consistency.

2.2 | Methods

We focus on summer season (June–July–August; JJA)
averages using geopotential height (Z) at 500 and
250 hPa, zonal wind (u) at 850 and 250 hPa and meridio-
nal wind (v) at 250 hPa.

Rossby wave statistics are inferred from the root-
mean-square (amplitude) of filtered daily-mean Z at
500 hPa (Lau, 1988). Using wavenumber filtering (via
Fourier transform), waves are categorized as long (zonal
wavenumber k≤ 4) or short (k≥ 5). A breakdown into
stationary (climatological) and transient (after removing
the smoothed (first four harmonics) daily seasonal cycle)
components is performed, with the transient waves fur-
ther filtered (5th order Butterworth, cut-off period of

12 days) to obtain low- and high-frequency components.
Some results are presented in the form of lagged regres-
sion maps, where low-frequency Z at 250 hPa is regressed
onto the reference timeseries from a specific region.
Additionally, the Rossby wave source1 (Sardeshmukh &
Hoskins, 1988; Scaife et al., 2017) and horizontal compo-
nents of the E-vector2 (Hoskins et al., 1983) are computed
to assess how the generation and propagation of Rossby
wave trains (impact on the mean flow/jet streams)
changes between experiments (for details see Figure S10).

Blocking frequency is computed as the number of
blocking events per day. Blocking events are identified
via the daily mean geopotential height gradient reversal
at 500 hPa (Z500) at each grid point between 35& N and
75& N (ϕ0) and over 15 degrees of latitude (ϕN ,ϕS) as
(Cheung et al., 2023; Scherrer et al., 2006)

GHGN λ,ϕ0, tð Þ ¼ Z500 λ,ϕN , tð Þ"Z500 λ,ϕ0, tð Þ
ϕN "ϕ0

< "10m=&latitude,
ð5Þ

GHGS λ,ϕ0, tð Þ¼Z500 λ,ϕ0, tð Þ"Z500 λ,ϕS, tð Þ
ϕS"ϕ0

> 0m=
&
latitude,

ð6Þ

with ϕ0 � 35,75½ )
&
N, ϕN ¼ϕ0þ15

&
N, ϕS¼ϕ0"15

&
N.

Additionally, the blocked area must be at least 106 km2

in spatial extent, and blocking should persist for at least
4 days to be classified as an event.

3 | RESULTS

3.1 | Mean state

First, we assess the response of the boreal summer circu-
lation to regional nudging. In reanalysis, NH summer is
characterized by a rather zonally symmetric mean state
(Figure 2a showing Z at 500 hPa), consistent with weakly
tilted jet streams in both storm track regions
(Figure 2e,i). There is also a subtropical jet stream across
central Eurasia (Figure 2i) and a weaker subpolar jet
stream across high-latitude Eurasia (Figure 2e).

The control experiment exhibits substantial biases in
these fields. Most notable are the poleward-shifted jet
streams, evident at lower (Figure 2f) and upper
(Figure 2j) levels. Consistent with the biases in zonal
winds are biases in mid-tropospheric geopotential height
(Figure 2b), namely overly low Z in the polar regions and
overly high Z in the midlatitudes. These biases are
broadly consistent with biases in other AMIP simulations
(Figure S1a–c) and in coupled climate models
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Indeed, there are substantial errors (relative to ERA5;
Figures 3a, S2a, S3a and S4a) in long wave statistics in
the control experiment (Figures 3b and S3b), dominated
by the transient component (Figures S2b and S4b).
Focusing on the Pacific, the long wave activity is shifted
poleward, consistent with the poleward bias of the Pacific
jet stream (positive baroclinic feedback; Robinson, 2000),
but there are also associated biases upstream and down-
stream. When nudging is switched on (Figures 3c and
S2c), local biases in long wave statistics vanish
(by design) and are reduced upstream. However, effects
downstream are less straightforward: long wave statistics
worsen overall (Figure 3c) even though transient biases
are reduced (Figure S2c), suggesting that the stationary
component dominates in this region. Similar results for
long waves are found in the Atlantic nudging experiment,
though the upstream improvements of transient long
waves are much smaller and downstream improvements
of stationary waves are better (Figures S3c and S4c).

Figure 4 confirms that Pacific nudging improves the
westward propagation of long waves (assessed via low-

frequency Z at 250 hPa) at higher latitudes. With nudg-
ing, the Pacific jet (Figure 2g,k) is further equatorward
(like in ERA5) relative to CTL (Figure 2f,j), and the
weaker high-latitude background flow permits ‘faster’
westward wave propagation (Equation 1). Indeed, long-
wave packets originating north of the Aleutian Islands
are estimated to propagate westward across Eurasia at
around 2m+s"1 in CTL (Figure 4, right column and
Table S2) and 5m+s"1 with Pacific nudging (middle col-
umn), with the latter comparing better to the 6.5m+s"1

propagation speed in ERA5 (left column). We find consis-
tent results at lower latitudes, where nudging strengthens
the westerlies and slows westward wave propagation
(Figure S5).

The above results suggest that a better representation
of horizontal winds improves the representation of long
waves in and upstream of the nudged region (Figure 3c).
This improves momentum fluxes of Rossby waves (com-
pare Figure S10f,j with Figure S10g,k) that drive the mid-
latitude jet streams. This in turn improves the Eurasian
jet stream (Figure 2k) through wave-mean flow interac-
tions (Hoskins et al., 1983; Figure S10e–l).

Short wave (k≥ 5) activity associated with the midlat-
itude storm tracks is also affected by a poleward-biased
jet stream. Figure 5b shows that the control experiment
exhibits weaker storm tracks than ERA5 (Figure 5a), con-
sistent with typical storm track biases in atmosphere-only
and coupled climate models (Priestley et al., 2020, 2023).
The storm tracks are also poleward shifted compared to
ERA5, especially in the Pacific.

Again focusing on the Pacific, nudging improves
storm track intensity locally (by design) as well as down-
stream (Figure 5c), with both high- and low-frequency
components contributing (Figure S6). However, the mod-
ulation of short waves downstream of the nudging region
is weak, perhaps due in part to persistent long-wave
biases over North America (Figure 3c). Consistent with
little change in the short wave statistics further down-
stream, the jet stream bias over the Atlantic remains sim-
ilar with Pacific nudging (Figure 2f,g,j,k). This may be
because: (i) the jet bias over the Atlantic is smaller than
over the Pacific in CTL (less room for improvement); or
(ii) the Atlantic exhibits regime behaviour in summer
(Rousi et al., 2022) just as in winter (Woollings
et al., 2010), which is more difficult to change through
mean-state nudging.

Similarly, we find a weak downstream influence in
the Atlantic nudging experiment relative to the control
experiment (Figure S7). However, the Atlantic experi-
ment is somewhat more complicated as the high-
frequency short waves are actually degraded downstream
of the nudging region (over Eurasia) relative to the con-
trol experiment (Figure S8). This can explain the bias in

FIGURE 3 Root-mean-square of Z at 500 hPa for long waves
(k≤ 4). (a) ERA5 climatology, (b) difference in climatology between
CTL experiment and ERA5 and (c) difference in climatology
between Pacific nudging experiment and ERA5. Contours in all
panels represent select contours of ERA5 climatology from (a).
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that the overheated central Asian landmass contributes
to a poleward-shifted jet stream over Eurasia, as well as
to weakening of temperature gradients equatorward of
the jet, which results in a weaker storm track. Thus, the
atmospheric circulation over Eurasia and the North
Pacific are intrinsically linked, with a two-way interac-
tion between the regions ultimately setting the summer
circulation biases in climate models. We have shown that
the North Pacific atmospheric circulation plays an impor-
tant role for boreal summer climate and highlighted
importance of long-wave signals upstream of storm-track
regions. Identifying the causes for these biases should be
a subject of further research.

Open research: NorESM2.2 model code is freely avail-
able on github (https://github.com/NorESMhub/
NorESM/tree/noresm2.2) and details about using this
model version as well as regional nudging implementa-
tion can be found here: https://noresm22-nudging-
regional.readthedocs.io/en/latest/index.html. ERA5 data
are available through https://cds.climate.copernicus.eu/
(Hersbach et al., 2020). CMIP6 model data are accessible
through https://esgf-node.llnl.gov/search/cmip6/ (Eyring
et al., 2016).
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ENDNOTES
1 Rossby wave source = "r + vχζ

! "
, where ζ is absolute vorticity,

vχ is the divergent component of horizontal wind and r-operator
is computed in spherical coordinates.

2 E-vector = v02"u02,"u0v0
! "

where u and v are zonal and meridio-
nal winds, and prime (0) denotes perturbation from smooth sea-
sonal cycle.
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